

Review Paper:

Acid rain and its effect on aquatic ecosystem: A critical review on plants

Neha S., Jyotika Jayan, Vasukhi S.M. and Jidhu Vaishnavi S.*

Department of Environmental Science and Disaster Management, Amrita School of Agricultural Sciences, Coimbatore, Tamil Nadu, INDIA

*sjvaishnavi@gmail.com

Abstract

Acid rain is one of the serious environmental problems in recent days. It creates a major impact on terrestrial as well as aquatic ecosystems. The main purpose of the review is to emphasize the impact of acid rain on the aquatic ecosystem. The main contributing factors to acid rain are the release of nitrogen dioxide, sulphur dioxide and ozone into the atmosphere. The important effect of acid rain is eutrophication which means over-enrichment of lakes and pond. Acid rain creates a impact on lake and stream by increasing the concentration of nitrogen and sulphur in the water which leads to the loss of buffering capacity and leads to the death of aquatic organisms.

Acid rain influences the metabolic activity of aquatic animals. At very low pH levels, adult fishes tend to die. Acid rain affects the aquatic plants by impacting an effect on leaf micromorphology, leaf organelles, photosynthesis, enzyme activities and causes damage to plant leaves. Acid rain has wet and dry deposition forms. Legislations should be made available to control the effect of acid rain to save the biodiversity.

Keywords: Acid Rain, Aquatic plants, Ecosystem, Sulphur dioxide.

Introduction

The Earth has given humans an environment abundant with natural resources, comprising of the elements Prithvi (earth), Jala (water), Vayu (air), Akasha (space) and Agni (fire). This nature in the hands of humans, is under the most pressure in various aspects to fulfill the unbounded needs of these rival scavengers. Human beings, regardless of considering these natural resources as common to all living beings, take them and get covered and determined in the hands of few, resulting in enormous depletion and unequal distribution leading to many problems. Currently, the nature is closely linked to both the exploitation and limited restoration of natural resources. To be more explicit, there are many types of pollution and their corresponding effects. In today's fast-paced society, we often neglect basic needs such as eating, sleeping and working, but never overlook the essential act of breathing.

Furthermore, it is crucial to preserve and label our existence. Beneath an apparent problem of pollution lies a grave situation exacerbated by its devastating consequences.

Therefore, it expects a crucial and necessary debate regarding the significant and dangerous consequences of acid rain. Acid rain poses a detrimental and dangerous environment for the viability of both living and non-living elements. Furthermore, it has a wide-ranging impact on both terrestrial and aquatic ecosystems, thereby disrupting their biodiversity.

Acid rain was initially observed in European countries during the mid-19th century. Ducros was the first scientist to observe acid rain in the year 1845. In 1852, Robert Angus Smith became the first person to establish a connection between acid rain and atmospheric pollution in Manchester, England. In 1872, Smith coined the term "acid rain" ¹⁰ and in the late 1960s, scientists initiated an investigation and observation of the phenomenon in order to uncover the underlying events that would maintain the mysterious nature of the subject among the scientific community, thereby stimulating debates and discussions aimed at elucidating the notions and achieving widespread acceptance.

Acid rain, also known as acid deposition, refers to any type of precipitation that contains acidic substances such as sulphuric acid or nitric acid, that falls from the atmosphere in either wet or dry forms. Additionally, it encompasses other type of precipitation that exhibits high acidity, characterized by higher concentrations of hydrogen ions²⁴. This encompasses various forms of precipitation such as rain, snow, fog, hail, or even dust particles that possess acidic properties. The majority of water, including water suitable for consumption, typically has a pH level that falls between the neutral range of 6.5 to 8.5. However, acid rain has a lower pH level, averaging around 4-5, which is below the neutral range⁵⁰. It has a crucial impact on causing environmental harm and cross-border contamination, which includes lasting consequences. Acid rain is characterized by the presence of very acidic water droplets which result from significant quantities of sulphur dioxide and nitrogen dioxide⁵⁵.

Sources of Acidic Pollutants

Acid rain occurs when precipitation takes on an acidic nature due to the presence of carbon dioxide in the atmosphere. The main cause of this phenomenon is the combustion of fossil fuels such as coal, oil and gas in domestic and industrial activities, as well as other contributing elements that generate sulphur dioxide and nitrogen oxides. These pollutants can elevate the acidity levels of rain and other forms of precipitation. The sources of oxides of nitrogen, sulfur and other harmful substances can be either naturally

occurring such as volcanoes, oceans, biological decay and forest fires, or they can result from combustion processes in industries that generate the required output sources through chemical and physical reactions.

The increasing demand for electricity and the rise in the number of motor vehicles in recent decades has increased acidifying pollutants dramatically since the 1950s. Emissions of such pollutants are heavily concentrated in the northern hemisphere, especially in Europe and North America⁴. As a result, precipitation is generally acidic in these countries. From the late 1970s and 1980s, Scandinavian countries such as Denmark, Sweden and Norway from northern Europe noticed the effects and impacts of acid deposition on trees and freshwaters. Much of the pollution causing this damage in their country was identified as being transported from other polluting countries. Hence, acid rain becomes an international concern.

Causes of Acid Rain

There are multiple factors contributing to the occurrence of acid rain. The main contributing factors to acid rain are the release of nitrogen dioxide, sulphur dioxide and ozone gases into the atmosphere²¹. Sulphur dioxide and nitrogen oxides are released into the atmosphere by volcanic eruptions, earthquakes, natural fires, lightning and some microbiological processes. The primary hazardous volcanic gases in volcanic eruptions are sulphur dioxide, carbon dioxide and hydrogen fluoride. On a local scale, the presence of sulphur dioxide gas from a volcano can result in the formation of acid rain and air pollution in areas located downwind. These gasses are emitted from lava flows and the explosive eruption of a volcano.

Nevertheless, the primary source of sulphur dioxide emissions is human activity, specifically the combustion of fuels in industrial and power plant settings. Additionally, motor vehicles are responsible for half of the nitrogen oxide emissions, as they release gasses that contribute to this pollution⁴³. Forest fires, vegetation degradation and biological processes also emit substantial amounts of gases, resulting in the formation of acid rain. Dimethyl sulfide is a significant biological source of sulphur-containing compounds in the environment.

The formation of nitrogen dioxide in the atmosphere is mostly due to anaerobic biological interactions in the soil/water and photochemical destructions. Lightning activity generates nitric oxide which combines with water to create nitric acid, a crucial component of acid rain²¹. In addition, extensive cattle farming generates ammonia through the decomposition of organic matter, leading to formation of nitric acid in the atmosphere but, it is of lesser extent. These pollutants, which can travel vast distances from their source, react with the environment and produce sulphuric acid and nitric acid⁴. These acids dissolve in water droplets within the clouds and precipitate onto the Earth's

surface as acid rain, which can also manifest as snow or fog. Acid rain is a consequence of chemical reactions occurring in the environment. Acid rain, characterized by its low pH and high aluminum content, causes numerous chronic stressors in aquatic species.

Effects of Acid Rain

The ecological effects of acid rain are most clearly seen in aquatic or water ecosystems such as streams, lakes and marshes. Acid rain falling on forests, fields, buildings and roads will move to streams, lakes and marshes. Acid rain also falls directly on aquatic habitats and causes damage to them. Mostly, lakes and streams have pH between 6 and 8 excluding some lakes which are naturally acidic. Acid rain primarily affects watersheds whose soils have a less ability to neutralize acidic compounds, called buffering capacity. Lakes and streams become acidic when the water surrounding the soil cannot react with the acid rain to neutralize it. In areas where buffering capacity is low, acid rain releases aluminum from soils into lakes and streams which is highly toxic to many species of aquatic organisms.

1. Effect on lake and stream: Lakes are one of the essential aquatic ecosystems supporting water life. Acid rain is one of the results of various anthropogenic activities which harm the lakes to a greater extent. They have buffering capacity to balance their fluctuating pH levels, to support aquatic life. However, their long time deposition causes the concentration of nitrogen and sulphur compounds to be increased in the water, resulting in the loss of their buffering capacity and slowly, its water becomes acidic, resulting in the death of aquatic life¹¹. The countries like Norway have been suffering from acidification of lakes, which has also reduced their freshwater availability. Most of the European countries, the US and Canada, are also suffering from these problems.

Many lakes and streams examined by National Surface Water Survey (NSWS) on 2000 suffer from chronic acidity, a condition in which water has a constant low pH level²³. The survey investigated the effects of acidic deposition in approximate 1,180 lakes and 4670 streams more believed to be sensitive to acidification. Acid rain caused acidity in 75 percent of the acidic lakes and about 50 percent of the acidic streams²⁸. Streams flowing over soil with low buffering capacity are also susceptible to damage from acid rain as lakes²⁷. Approximately 580 of the streams in the Mid-Atlantic coastal plain are acidic primarily due to acidic deposition.

2. Eutrophication of lake: Eutrophication can be defined as the over-enrichment of minerals and nutrients in water bodies such as lakes and ponds. This excessive growth of algae in the lake is called an algal bloom, which covers lake surfaces with a green blanket. Eutrophication depletes the dissolved oxygen and increases the biochemical oxygen demand of water. It also prevents the entry of sunlight and gaseous exchange from the lake water, resulting in the loss

of underwater plant and animal species. Excess accumulation of nitrogen, phosphate and organic compounds is the major cause responsible for the eutrophication of lakes.

However, acid rain is another essential reason behind eutrophication in lakes. As acid rain reaches the ground, it solubilizes several available nutrients in the soil, which ultimately reaches the nearby water bodies. This continuous flow of such water leads to nutrient enrichment and causes eutrophication in lakes³⁵. Dal lake is one of the famous lakes in Srinagar, Jammu Kashmir, India and is slowly dying due to eutrophication. Thus, the freshwater availability for the cities, as well as the aquatic life forms, have decreased in the lake³¹.

3. Effect on fish and other aquatic organisms: Acid rain causes several effects that harm or kill individual fish, reduce fish population, eliminate fish species from a waterbody and decrease biodiversity⁴⁸. As acid rain flows through soils in a watershed, aluminum is released from soils into the lakes and streams located in that watershed. So, as pH in a lake or stream decreases, aluminum levels increase. Both low pH and increased aluminum levels are directly toxic to fish. It also causes chronic stress that may not kill individual fish but leads to lower body weight and smaller size and makes fish less able to compete for food and habitat. Some types of plants and animals can tolerate acidic waters. Generally, the youngest species are more sensitive to environmental conditions than adults. At pH 5, most fish eggs cannot hatch. At lower pH levels, some adult fish die. Some acid lakes have no fish²¹.

Aquatic ecosystem has a wide range of biotic components like autotrophs and heterotrophs. Acid rain lowers the acidity of the water bodies as water has a lower acid buffering capacity than soil. Thus, acid rain changes the acidity of the lake. Acid rain also releases aluminium from soil to the lakes and streams, which is highly toxic to aquatic life such as algae, mosses, phytoplankton and consumers. Phytoplankton is an essential source of food for filter-feeding crustaceans and rotifers. Many of them are very sensitive to low pH levels and thus disappear from water bodies after acid rain⁴⁰.

4. Effect on ecosystem: Biological organisms and the environment in which they live, from an ecosystem. The plants and animals living within an ecosystem are highly interdependent. For example, frogs may tolerate relatively

high levels of acidity, but if they eat insects like the mayfly, will get affected and also part of their food supply may disappear. The connections between the many fish, plants and other organisms living in an aquatic ecosystem are inter dependent. If there are changes in pH or aluminum levels, they will affect the aquatic biodiversity. Thus, as lakes and streams become more acidic, the numbers and types of fish and other aquatic plants and animals that live in these waters, decrease⁵³. Thereby, acid rain affects the terrestrial ecosystem by harming their environment.

Acid rain has varied effects on different ecosystems and environments including both terrestrial and aquatic habitats. Some effects of acid rain are listed as follow:

- Acid rain causes the oceans to lose their biodiversity and productivity. The lowering of the pH of marine waters harms phytoplankton, a food source for different organisms and animals, which can modify the food chain and can lead to the extinction of different marine species.
- Inland waters are also acidifying at a very rapid rate which is particularly worrying as although only 1% of the planet's water is fresh, 40% of fish live in it. This acidification increases the concentration of metal ions mainly aluminum ions which could lead to the death of many fish, amphibians and aquatic plants in acidified lakes. In addition, heavy metals are transported to underground waters, which become unsuitable for consumption⁴⁵.
- In forests, the low pH level of the soil and the concentration of metals such as aluminum prevent vegetation from adequately absorbing the water and nutrients. This damages roots, slows growth and makes plants weaker and more vulnerable to diseases and pests²⁹.
- Acid rain also affects artistic, historical and cultural heritage. In addition to corroding metallic elements of buildings and infrastructures, it deteriorates the external appearance of monuments. The most significant damage occurs to calcareous constructions such as marble, which gradually dissolve because of acids and water⁵⁸.

Acidification causes death of aquatic plants and has a significant impact on amphibians¹⁶. Many amphibians are susceptible to acidification because at different pH levels, different species can live.

Table 1
pH of various waters in comparison with acid rain

S.N.	Types of water	pH Level	Acid Rain pH
1	Tap water	~7.5	5 to 5.5
2	Distilled reverse osmosis water	5 to 7	
3	Common bottled water	6.5 to 7.5	
4	Bottled water labelled as alkaline	8 to 9	
5	Ocean water	About 8	

Effect of Acid Rain in Plants

Plants necessitate an ideal pH level in order to sustain their existence. Acid rain changes the pH of the water, which in turn impacts plant growth. Acid rain depletes the minerals and nutrients in the submerged soil, which are crucial for optimal plant growth⁵³. Additionally, it has wider impact on the process of photosynthesis. Juvenile plants are the most susceptible ones^{49,50}. The available oxygen content for the plant is significantly impacted. Plants utilize the oxygen present in the water, also absorb the acid, ultimately leading to their demise. Duckweed and Elodea are capable of thriving in pH levels of 5. But, acid rain droplets extract nutrients from plant leaves. It facilitates the dissolution of essential elements such as magnesium and calcium, which provide plants with the ability to resist illnesses and insects. Hence, acidophilic plants exhibit rapid mortality in reaction to acid precipitation⁵⁷.

Aquatic plants, also known as hydrophytes, are evolved to thrive in habitats with waterlogged conditions. These encompass a variety of habitats, ranging from aquatic environments such as deep water to terrestrial places like bogs and marshes. Based on physiological and morphological adaptations, these plants were classified into two types. The first category is helophytes, these are plants that have their roots beneath but have stems that emerge above the water, where they develop leaves and reproductive structures e.g. lilly, lotus, water caltrop, Chinese water Chesnut, water spinach etc. The second category, hydrophytes, these are plants that are specifically adapted to live immersed in water e.g. water hyacinth. The hydrophytic plants can be categorized into different species based on their characteristics.

The roots firmly attached to the substrate below, able to float freely, having leaves and/or reproductive parts submerged underwater, or having leaves and/or reproductive parts above the water surface^{19,24}. The occurrence of aquatic plants is largely dependent on the depth and speed of water flow and water quality. If the quality of water depletes due to acid rain, the life of plants will be disturbed. Acid rain has an essential effect on plants, as it ceases vital activities and growth by regulating plant-associated soil microorganisms. Acid rain helps in inducing soil acidification and nutrient deficiency. It causes enormous environmental problems and has adverse effects on plants globally. Acid rain deposition on parts of the plants, such as leaf, flower, shoot, stem, etc. causes the early death of the plant.

Effect on plant leaf

1. Effect on leaf micromorphology: Acid rain negatively impacts leaf micromorphology by weakening the protective waxy layer on the surface and damaging the outer layer of cells, epidermis. This, in turn, has detrimental effects on the process of plant photosynthesis. Acid rain causes damage to the outer layer of plants and alters the structure of guard cells in leaves, as well as causing certain alterations in the inner tissue^{2,7,42}. In water hyacinth, both the epidermal and

mesophyll cells collapse, resulting in the hypertrophy of parenchymatous spongy tissues²⁵.

2. Effects on leaf organelles: Acid rain causes disturbances to the cell organelles and mesophyll tissue found in leaves, resulting in harm to specific organelles such chloroplasts and mitochondria. According to Chen et al⁸, acid rain damages cell walls and cell membranes by creating mitochondrial ridges. Furthermore, acid rain can result in the distortion of chloroplasts and disrupt the grana, leading to the removal of crests^{20,26,32}. Observation of plasmolyzed guard cells and rupturing of cuticle in necrotic areas can be seen in water hyacinth, as described by Bjerregaard et al⁵.

Effect on photosynthesis in leaf: Acid rain significantly affects the process of photosynthesis. Photosynthesis is a vital and essential physiological process of plants¹³. To produce oxygen, it is essential to ensure an acid-free atmosphere, as this is highly important for human survival. Exposure of carbon dioxide to acid or acid rain can have detrimental effects on physiological functions including the erosion of the hydrophobic coating on leaf surfaces that aids in water regulation, damage to chloroplasts and the extraction of acid-induced base cations in mesophyll cells¹⁴. The affects can lead to change in certain plant taxonomy, life cycle stages and pH levels^{33,54}. Non-woody plants are more vulnerable to the harmful effects of acid rain than woody plants, as demonstrated by studies conducted by Sant'Anna-Santos et al⁴².

Dong et al¹⁴ observed that acid rain can actually increase the rate of photosynthesis in leaves of woody plants when they absorb nitrates from the acid rain, leading to a beneficial outcome. The chlorophyll ratio in water hyacinth increased when the intensity of the rising irradiance was adjusted. Cosby et al⁹ found that acid rain does not harm mature leaves, but it reduces the ability of both stomata and mesophyll in younger leaves, both in the short and long term.

4. Effects on enzyme activities and metabolism: Acid rain causes a series of changes in plant membrane permeability. Enzymatic activities lead to synthesis of free radical antioxidants and plant metabolism^{34,39,53,57}. Acid rain damages the natural enzymatic and non-enzymatic pathways. Acid rain helps in creating more number of reactive oxygen species inside the cell. Superoxide dismutase enzymes is involved in the first step of defense against super oxide radicals. Catalase, the second step of defense, involves the destruction of H_2O_2 , which is produced in the cell when acid rain falls on the plant²².

Nitrate reductase plays a vital role in nitrogen metabolism and nitrogen uptake by plants and is related to the uptake and use of N by plants. Increased acid rain intensity causes decreased nitrate reductase levels in plants^{38,46}. In water hyacinth when exposed to acidic conditions, reduced nutrient uptake, brown leaves and withered plants were observed in initial stages¹³.

5. Apparent damage to plant leaf: Acidified ocean causes changes in physical, chemical and biological changes in leaves⁴⁴. The leaves of aquatic plants will expose symptoms such as yellow-brown and black-brown necrotic spots at the margin and in between the veins, excessive greenness, curl, wilting and abscission on or after acid rain^{17,18,30}. Acid rain at pH 5 damages woody and non-woody plants and causes necrotic spots on the leaf surface⁵⁵. The older leaves show small brown spots at pH 3.0^{45,52}. Some conclusions were made in response to acid rain: (1) wilting of standard epidermal cells and structural damage of stomatal guard cells at pH 4.5, (2) interveinal and marginal necrotic dots, (3) cracking of epicuticular wax, (4) turgidity loss, (5) modification of epidermal cell, (6) hypertrophy of parenchymatous cells, (7) collapse of epidermal and mesophyll cells at pH 3.0, (8) necrotic spots, (9) cuticle changes and (10) areas of total tissue destruction at pH 2.5^{2,3,41,56}. The same effects were observed in water hyacinth such as decreased photosynthesis and chlorophyll uptake in long term and short term, poor mobility of nutrients, withered leaves with brown discoloration¹³.

Effect on plant growth

1. Effect on length of aquatic plant: The severity of acid rain often has a substantial impact on plant height or stem height. Acidic conditions frequently lead to a decrease in the size of underwater plants due to the inhibition of plant growth¹.

2. Effect on weight of aquatic plant: Low pH and high aluminum levels lead to a toxic effect especially reduction in weight of the aquatic plants. Further acidity causes stress that reduces the weight of the plant below the water surface³⁷.

3. Effect on plant reproduction: Aquatic plants become highly sensitive on response to acid rain. Due to higher level of sensitivity, most of the aquatic plants die before reaching reproductive stage³⁶.

Wet and dry deposition of acid precipitation

Acid rain is a detrimental phenomenon caused by the presence of certain pollutants in the atmosphere, resulting in rain that becomes acidic. It falls under the category of acid deposition, which can manifest in various forms. One form is wet deposition wherein rain, sleet, snow, or fog become more acidic than usual. Another form is dry deposition which involves the transformation of gases and dust particles into acidic substances. The wind can transport these forms of acid deposition over significant distances⁴⁷.

As acid deposition occurs, it affects not only the environment but also affects various structures and organisms. Buildings, cars and trees are all susceptible to the corrosive effects of acid deposition. Additionally, lakes can be negatively affected by acidic precipitation, leading to increased acidity levels. In the case of dry deposition, people can inhale acid particles and gases, which can result in health issues for specific individuals.

Dry deposition occurs explicitly when minuscule acidic particles and gases descend upon the Earth's surface. Notably, gases like Sulphur dioxide and nitrogen oxides undergo chemical reactions upon contact with water, transforming into acids. When referring to acid precipitation, it encompasses any form of aqueous precipitation that has a higher acidity level than carbon dioxide (CO₂). It encompasses both wet and dry forms of acid deposition⁶. Dry deposition primarily transpires near the emission source as the acid gases and compounds settle onto the Earth's surface. On the other hand, wet deposition can occur thousands of kilometers away from the original emission source, as wind currents can carry it for extensive distances.

Effect of Acid Rain in Aquatic Animals

Acid rain affects the metabolic activities of many animals especially digging and spawning behaviour in brown trout (*Salmo trutta*) and the result was compared with those in Hime (*Landlocked sockeye*) and Salmon (*Oncorhynchus nerka*). The spawning brown trout was found to be extremely sensitive towards the acidity of water, especially pH below 5 and the nest-digging behavior was inhibited. The female trout and salmon showed no digging below pH 5.0 and 6.0 respectively. When the pH of ambient water returned to nearly neutral conditions, these two species behaved differently.

The digging in hime and salmon reappeared in 4 of 6 fishes tested²⁴, whereas in brown trout, the digging behavior reappeared in all tested fishes. The spawning behavior is significantly reduced in an acidic environment and that is the reason for the reduction of the salmonid population in the early stage of acidification.

The regular activities of animals also get affected by acid rain. When the effect of low pH (4.5) condition was examined on endocrine and immune function in carp (*Cyprinus carpio*), the hormone plasma cortisol levels showed a drastic significant increase (about 100 ng/ml) as early as 3hr after the initiation of low pH exposure and remained high for two days. Cortisol levels decreased to 8.14 ng/ml after one week but were still significantly higher than those of control (pH 7.0). The immune response also showed some variations due to acid rain. The plasma levels of antibodies also decreased¹⁹.

At lower pH, some adult fishes die and the most important aspect is that at pH 5, most fish eggs cannot hatch⁵⁷. If so in extreme cases if the fishes survive the animals on consumption of these fishes get adversely affected. Due to acidification of ocean, the prey capturing ability and early life of octopus are drastically affected¹².

Conclusion

Acid rain is the result of toxic emissions of nitrogen dioxide and sulfur dioxides from various sources. When these emissions react with rainwater, the pH of the resulting rainwater becomes highly acidic, ranging from 5 to 5.6. This

acidity is harmful to human life, damaging to infrastructure and unsuitable for consumption. Acid rain significantly affects both terrestrial and aquatic ecosystems, compromising their sustainability and development. This issue, along with other contributing factors, has garnered attention and concern from the public, prompting collective efforts to enhance future protection measures. However, when considering the aquatic ecosystem, the impacts and harm caused by it are once again diverse and varied.

The impact on the metabolism of aquatic plants and the detrimental decrease in their ability to tolerate and adapt to the unpredictable environment are also significant factors. Acid rain has interconnected impacts that disrupt the entire cycle in which it overlaps or depends on many functions, affecting their life processes. It also significantly impacts the markets and the related sectors that rely on or establish their core units inside these aquatic environments. Therefore, it is important to address the concerns that emphasize the need for a major initiative to rectify and to mitigate the errors that contribute to the occurrence of acid rain.

References

1. Alimi O.S., Budarz J.F., Hernandez L.M. and Tufenkji N., Microplastics and nanoplastics in aquatic environments: aggregation, deposition and enhanced contaminant transport, *Environmental Science & Technology*, **52**(4), 1704–1724 (2018)
2. Andrade G.C. and Silva L.C., Responses of tropical legumes from the Brazilian Atlantic Rainforest to simulated acid rain, *Protoplasma*, **254**, 1639–1649 (2017)
3. Andrade G.C., Castro L.N. and Silva L.C., Micromorphological alterations induced by simulated acid rain on the leaf surface of *Joannesia princeps* Vell. (Euphorbiaceae), *Ecol. Indic.*, **116**, 106526 (2020)
4. Bell J.N.B., Recent developments in acid rain research, *Journal of Biological Education*, **22**(2), 93–98 (1988)
5. Bjerregaard P., Andersen C.B. and Andersen O., Ecotoxicology of metals—sources, transport and effects on the ecosystem, In *Handbook on the Toxicology of Metals*, 593–627 (2022)
6. Byrne M., Yeates D.K., Joseph L., Kearney M., Bowler J., William M.A.J. and Wyrwoll K.H., Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota, *Molecular Ecology*, **17**(20), 4398 (2008)
7. Chen D., Studies on the decomposition of *Schima superba* litter and on the law of it on the soil effect, *Journal of Fujian Forestry Science and Technology*, **28**, 35–38 (2001)
8. Chen Q., Chen H., Wang W., Liu J., Liu W. and Ni P., Glycyrrhetic acid, but not glycyrrhizic acid, strengthened entecavir activity by promoting its subcellular distribution in the liver via efflux inhibition, *European Journal of Pharmaceutical Sciences*, **106**, 313–327 (2017)
9. Cosby B.J., Wright R.F., Hornberger G.M. and Galloway J.N., Modeling the effects of acid deposition: Estimation of long-term water quality responses in a small forested catchment, *Water Resources Research*, **21**(11), 1591–1601 (1985)
10. Crane A.J., Acid rain, *Journal of the Royal Society of Health*, **110**(3), 77–80 (1990)
11. Crider K.M., Interstate Air Pollution: Over a Decade of Ineffective Regulation, *Chi.-Kent L. Rev.*, **64**, 619 (1988)
12. Culler-Juarez M.E. and Onthank K.L., Elevated immune response in *Octopus rubescens* under ocean acidification and warming conditions, *Marine Biology*, **168**(9), 23–45 (2021)
13. Das K. and Roychoudhury A., Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants, *Frontiers in Environmental Science*, **2**, <https://doi.org/10.3389/fenvs.2014.00053> (2014)
14. Dong D., Du E., Sun Z., Zeng X. and de Vries W., Non-linear direct effects of acid rain on leaf photosynthetic rate of terrestrial plants, *Environmental Pollution*, **231**, 1442–1445 (2017)
15. Du E., Dong D., Zeng X., Sun Z., Jiang X. and de Vries W., Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China, *Science and Total Environment*, **606**, 764–769 (2017)
16. Du Y.J., Wei M.L., Reddy K.R., Liu Z.P. and Jin F., Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil, *Journal of Hazardous Materials*, **271**, 131–140 (2014)
17. Dursun A., Yildirim E., Güvenc I. and Kumlay A.M., Effects of simulated acid rain on plant growth and yield of tomato (*Lycopersicon esculentum*), *Acta Horticulture*, **579**, 245–248 (2002)
18. Fan H., Hong W., Ma Z. and Waki K., Acidity and chemistry of bulk precipitation, throughfall and stemflow in a Chinese fir plantation in Fujian, China, *Forestry Ecological Management*, **122**, 243–248 (1999)
19. Fatima F., A review on acid rain: An environmental threat, *Pure and Applied Biology*, **10**(1), 301–310 (2020)
20. Ferenbaugh R.W., Effects of simulated acid rain on *Phaseolus vulgaris* L. (Fabaceae), *American Journal of Botany*, **63**, 283–288 (1976)
21. Fiza F., Nayab F., Amjad T., Anjum A., Afzal T., Riaz J. and Razzaq H., A review on acid rain: An environmental threat, *Pure and Applied Biology*, **10**(1), 301–310 (2021)
22. Gajewska E. and Skłodowska M., Differential biochemical responses of wheat shoots and roots to nickel stress: antioxidant reactions and proline accumulation, *Plant Growth Regulation*, **54**, 179–188 (2008)
23. García-Arreola M.E., Flores-Vélez L.M., Loredo-Tovías M., Aguillón-Robles A., López-Doncel R.A., Cano-Rodríguez I. and Soriano-Pérez S.H., Assessment of the acid drainage neutralization capacity and the toxic metals lixiviation of tailing from Guanajuato mining district, Mexico, *Environmental Earth Sciences*, **77**, 1–15 (2018)

24. Grennfelt P., Engleryd A., Forsius M., Hov Ø., Rodhe H. and Cowling E., Acid rain and air pollution: 50 years of progress in environmental science and policy, *Ambio*, **49**, 849-864 (2020)

25. He H., Veneklaas E.J., Kuo J.S. and Lambers H., Physiological and ecological significance of biomineralization in plants, *Trends in Plant Science*, **19**(3), 166-174 (2014)

26. Hindawi I.J., Rea J.A. and Griffis W., Response of bush bean exposed to acid mist, *American Journal of Botany*, **67**, 168-172 (2014)

27. Jackson Jr. R.P., Extending the Success of the Acid Rain Provisions of the Clean Air Act: An Analysis of the Clear Skies Initiative and Other Proposed Legislative and Regulatory Schemes to Curb Multi-Pollutant Emissions from Fossil Fueled Electric Generating Plants, *University of Baltimore Journal of Environmental Law*, **12**, 91 (2004)

28. Jeffries D.S., Brydges T.G., Dillon P.J. and Keller W., Monitoring the results of Canada/USA acid rain control programs: some lake responses, *Environmental Monitoring and Assessment*, **88**, 3-19 (2003)

29. Johnson D.W., Turner J. and Kelly J.M., The effects of acid rain on forest nutrient status, *Water Resources Research*, **18**(3), 449-461 (1982)

30. Kohno Y., Effects of simulated acid rain on Asian crops and garden plants, *Air Pollution Impacts on Plants in East Asia*, 223-235 (2017)

31. Kumar R., Parvaze S. and Huda M.B., The changing water quality of lakes—a case study of Dal Lake, Kashmir Valley, *Environmental Monitoring and Assessment*, **194**, 228 (2022)

32. Lan X.Y., Yan Y.Y., Yang B., Li X.Y. and Xu F.L., Subcellular distribution of cadmium in a novel potential aquatic hyperaccumulator - *Microsorum pteropus*, *Environmental Pollution*, **248**, 1020-1027 (2019)

33. Liu Y. and Cao H., Leaf injury and superoxide dismutase activity in spinach leaves exposed to SO₂ and/or simulated acid rain, *China Journal of Applied Ecology*, **4**, 223-225 (1993)

34. Ma S., Chen W., Zhang J. and Shen H., Influence of simulated acid rain on the physiological response of flowering Chinese cabbage and variation of soil nutrients, *Plant Soil Environment*, **66**, 42-51 (2020)

35. Mallick S., Kumar A. and Kumar P., Oxidation of HOSO by NH₂: A new path for the formation of an acid rain precursor, *Chemical Physics Letters*, **773**, 138536 (2021)

36. Martínez-Páramo S., Horváth Á., Labbé C., Zhang T., Robles V., Herráez M., Suquet M., Adams S.L., De Mendonça Viveiros A.T., Tiersch T.R. and Cabrita E., Cryobanking of aquatic species, *Aquaculture*, **472**, 156-177 (2017)

37. Morrissey C.A., Mineau P., Devries J.H., Sánchez-Bayo F., Liess M., Cavallaro M.C. and Liber K., Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review, *Environment International*, **74**, 291-303 (2015)

38. Qi Z., Zhong Z. and Deng J., The effects of simulated acid rain on nitrogen metabolism of *Eucommia ulmoides* Leaves, *China Journal of Plant Ecology*, **25**, 544-548 (2001)

39. Ren X., Zhu J., Liu H., Xu X. and Liang C., Response of antioxidative system in rice (*Oryza sativa*) leaves simulated acid rain stress, *Ecotoxicology and Environmental Safety*, **148**, 851-856 (2018)

40. Riscassi A., Scanlon T. and Galloway J., Stream geochemical response to reductions in acid deposition in headwater streams: Chronic versus episodic acidification recovery, *Hydrological Processes*, **33**(4), 512-526 (2019)

41. Rodríguez-Sánchez V.M., Rosas U., Calva-Vásquez G. and Sandoval-Zapotitla E., Does acid rain alter the leaf anatomy and photosynthetic pigments in urban trees?, *Plants*, **9**, 1-16 (2020)

42. Sant'Anna-Santos B.F., Azevedo A.A., Silva L.C.D., Araújo J.M.D., Alves E.F., Silva E.A.M.D. and Aguiar R., Effects of simulated acid rain on the foliar micromorphology and anatomy of tree tropical species, *Environmental and Experimental Botany*, **58**, 158-168 (2006)

43. Saurabh Sonwani S.S. and Vandana Maurya V.M., Impact of air pollution on the environment and economy, In Air pollution: Sources, impacts and controls, 113-134 (2019)

44. Shi Z., Zhang J., Xiao Z., Lu T., Ren X. and Wei H., Effects of acid rain on plant growth: a meta-analysis, *Journal of Environmental Management*, **29**, 113213 (2021)

45. Singh A. and Agrawal M., Acid rain and its ecological consequences, *Journal of Environmental Biology*, **29**, 15-24 (2008)

46. Solomonson L.P. and Spehar A.M., Model for the regulation of nitrate assimilation, *Nature*, **265**, 373-375 (1977)

47. Sun Z., Wang L., Zhou Q. and Huang X., Effects and mechanisms of the combined pollution of lanthanum and acid rain on the root phenotype of soybean seedlings, *Chemosphere*, **93**(2), 344-352 (2013)

48. Wason J.W., Beier C.M., Battles J.J. and Dovciak M., Acidic deposition and climate warming as drivers of tree growth in high-elevation spruce-fir forests of the Northeastern US, *Frontiers in Forests and Global Change*, **2**, 63 (2019)

49. Wei H., Liu Y., Xiang H., Zhang J., Li S. and Yang J., Soil pH responses to simulated acid rain leaching in three agricultural soils, *Sustainability*, **12**(1), 280 (2019)

50. Whelpdale D.M., Summers P.W. and Sanhueza E., A global overview of atmospheric acid deposition fluxes, *Environmental Monitoring and Assessment*, **48**, 217-247 (1997)

51. Wright R.F., Norton S.A., Brakke D.F. and Frogner T., Experimental verification of episodic acidification of freshwaters by sea salts, *Nature*, **334**(6181), 422-424 (1988)

52. Wyrwicka A. and Skłodowska M., Influence of repeated acid rain treatment on antioxidative enzyme activities and on lipid peroxidation in cucumber leaves, *Environmental Experiment Botany*, **56**, 198-204 (2006)

53. Xalxo R. and Sahu K., Acid rain-induced oxidative stress regulated metabolic interventions and their amelioration mechanisms in plants, *Biologia*, **72**(12), 1387-1393 (2017)

54. Yan C.L., Hong Y.T., Wang S.J., Fu S.Z., Yang X.K., Zhu K.Y. and Wu S.Q., Effect of rare earth elements on the response of the activated oxygen scavenging system in leaves of wheat, *Acta Agronomical Science*, **25**, 504-507 (2017)

55. Zhang C., Yi X., Gao X., Wang M., Shao C., Lv Z., Chen J., Liu Z. and Shen C., Physiological and biochemical responses of tea seedlings (*Camellia sinensis*) to simulated acid rain conditions, *Ecotoxicological Environment Safety*, **192**, 110315 (2020a)

56. Zhang C., Yi X., Zhou F., Gao X., Wang M. and Chen J., Comprehensive transcriptome profiling of tea leaves (*Camellia sinensis*) in response to simulated acid rain, *Scientia Horticulture*, **272**, 109491 (2020b)

57. Zhang G., Liu Y. and Zhou Q., Responses of 9 species of herbaceous ornamental to acid rain in chlorophyll content and membrane permeability, *J. Ecol. Rural Environ.*, **22**, 83-87 (2011)

58. Zhang X., Hoff I. and Saba R.G., Response and deterioration mechanism of bitumen under acid rain erosion, *Materials*, **14**(17), 911 (2021).

(Received 25th November 2024, accepted 25th January 2025)
